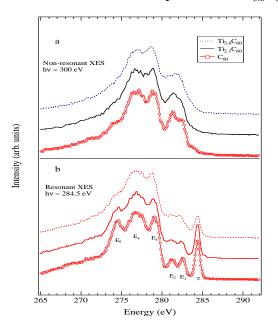
Electronic Structure of Ti_xC_{60} Fullerides Studied by X-ray Emission Spectroscopy

L. Qian¹, T. Käämbre¹, L. Norin², J.-H. Guo¹, C. Såthe¹, A. Agui¹, U. Jansson², and J. Nordgren¹

¹Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala, Sweden ²Department of Inorganic Chemistry, Uppsala University, Box 538, S-751 21 Uppsala,

ABSTRACT

For metal-fullerene compounds, it has been found that metal atoms can be bonded to fullerenes, resulting in different structures. Some of the alkali and alkaline-earth metal intercalated C_{60} compounds have shown the properties of superconductivity. According to the estimation of the energetical calculations, based on the assumption of the ionic bonding, the stable metal- C_{60} compounds are only those with alkali and alkaline-earth metals, or mercury. However, several studies have shown some evidences that transition-metal fulleride can be formed. The results suggest that the bond in this compound is covalent-like with a partial charge transfer from Ti to C_{60} . No detailed information of the exact bond nature was obtained in those studies and the further studies with complementary techniques are required.


In this work we present the results from C $K\alpha$ x-ray emission of Ti_xC_{60} . Our results demonstrate that the combined measurements of absorption and emission spectra can be used to provide electronic structure information of molecules. The information is element specific and selective and so is useful for the study of hybridization and bonding. This method has been successfully employed for the electronic structure analysis of fullerenes.^{7,8}

The samples were made by co-evaporation of C_{60} and titanium from a Knudsen-type effusion cell and an e-beam evaporator, respectively. Films deposited in an ultrahigh vacuum growth chamber. After co-evaporation, a vanadium capping layer ($\sim 500 \text{Å}$) was deposited on the surface of the sample to protect it from oxidation during the delivery for XES measurement. The preparation and characterisation of the films have been described in detailed in Ref. 6.

XES experiments were performed at beamline 7.0. A grazing incident soft x-ray fluorescence spectrometer (Grace) was used to measure the x-ray emission spectra. Figure 1 displays non-resonant (a) and resonant (b) XES spectra of Ti_xC_{60} , and C_{60} films with the excitation energy of 300 eV and 284.5 eV, respectively. The spectrum from the $Ti_{2.1}C_{60}$ sample exhibits a similar profile with respect to the energy position and intensity distribution of the pure C_{60} emission bands. The one for $Ti_{3.6}C_{60}$ presents the same linewidth as to pure C_{60} with respect to the total emission band, but the sub-band structures are smeared out. The emission band E_3 for $Ti_{3.6}C_{60}$ has a small shift towards to lower photon energy, showed in Fig.1 (a).

With 284.5 eV photon excitation, resonant XES spectra of Ti_xC_{60} and pure C_{60} were obtained and shown in Fig. 1 (**b**). A sharper peak of the emission at 284.5 eV, marked as e, appears due to the processes of atomic recombination and diffuse scattering. Five distinguishable emission bands are resolved in the resonant XES spectrum of C_{60} . According to *ab initio* Hartree-Fock frozen orbital model calculations, ¹⁰ the first emission band E_1 corresponds to the highest occupied molecular orbital of C_{60} with the $4h_u$ symmetry, while the second band E_2 represents a combination of the nearly degenerate $4g_g$ and $7h_g$ orbitals of C_{60} . Bands E_3 and E_4 contain more

complicated molecular orbital combinations, in which are included three h_g , three g_u , one h_u , one g_g , one a_g , and one t_{Iu} states. Band E_5 contains the $2h_u$, $3t_{Iu}$ and $2g_g$ orbitals of C_{60} . The resonant XES spectrum of $Ti_{2.1}C_{60}$ shows similar spectral profiles of these emission bands to the one of the pure C_{60} . Some intensity variations, compared with pure C_{60} , were observed for the bands E_I , E_2 , and E_5 . The observed variations of the intensities for these emission bands upon the excitation energy in the case of pure C_{60} , has been assigned as a result of symmetry selectivity and parity conservation of the resonant inelastic x-ray scattering process. The spectrum from $Ti_{2.1}C_{60}$ sample shows a decrease in intensity of the emission bands E_I and E_5 , which may indicate that the formation of a new compound phase reduces the symmetry. With the increase of titanium content, the structures for these bands are smeared out and the intensity of E_5 band was further decreased in the resonant spectrum of $Ti_{3.6}C_{60}$.

hv = 282.7 eV $- Ti_{3.6}C_{60}$ $- Ti_{2.1}C_{60}$ $- Pure C_{60}$ - Energy (eV)

Figure 1 (a) C $K\alpha$ non-resonant XES spectra of Ti_xC_{60} and C_{60} films, excited by the photons with the energy of 300 eV. (b) C $K\alpha$ resonant XES spectra of Ti_xC_{60} and C_{60} films, excited by the photons with the energy of 284.5 eV.

Figure 2. C $K\alpha$ resonant inelastic x-ray scattering spectra of Ti_xC_{60} and C_{60} films with the excitation energy of 282.7 eV. The spectra are smoothed using a binomial method.

Figure 2 shows XES spectra structure of Ti_xC_{60} and C_{60} films with detuning the excitation energy to 282.7 eV (at 1.8 eV below the C1s absorption threshold). For the $Ti_{2.1}C_{60}$ sample, at 272.8 eV, the peak has decreased obviously and is smeared out in $Ti_{3.6}C_{60}$, indicating Ti atom has bonded with carbon atom of C_{60} . Whereas the emission intensity of the peak from pure C_{60} has been almost depleted for both samples. Only a weak peak can be observed for $Ti_{2.1}C_{60}$ and $Ti_{3.6}C_{60}$ at the same energy position as the peak of pure C_{60} (272.8 eV). Also the intensity of this C_{60} characteristic peak decreases as the titanium concentration increases. Thus, one can attribute the structures in the spectrum of $Ti_{2.1}C_{60}$ film to the formation of the chemical bonding between Ti and C_{60} cage. These featrues also exsited the spectrum of $Ti_{3.6}C_{60}$ film but it is broaden at 278.5 eV, which reveals the tendency forwards titanium carbide, *i.e.*, C_{60} cage may start to be broken at this concentration of titanium.

The C $K\alpha$ x-ray emission spectra of the Ti_xC_{60} films show the same total emission bandwidth as that from the pure C_{60} sample. Resonant and non-resonant XES spectra of the $Ti_{2.1}C_{60}$ film exhibit an x-ray spectral shape similar to pure C_{60} , while the spectra of $Ti_{3.6}C_{60}$ film show some amount of contribution from the titanium carbide phase. All the experimental results indicate that a titanium fulleride is formed in the co-evaporation process of C_{60} and titanium, although some evidences for titanium carbide formation was obviously observed for $Ti_{3.6}C_{60}$ film.

This work was supported by the Swedish Natural Science Research Counsil (NFR). The experiments were performed at the ALS of LAwrence Berkeley National Laboratory operated by DOE under contract No. DE-AC03 76SF00098.

Principal investigator: Joseph Nordgren, Department of Physics, Uppsala University, Sweden. E-mail: joseph.nordgren@fysik.uu.se. Phone: +46 18 4713554.

REFERENCES

- ¹ M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, *Science of Fullerenes and Carbon Nanotubes* (Academic, New York, 1996), pp. 240 250.
- ² A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstraa, A. P. Ramirez, and A. R. Kortan, Nature **350**, 600 (1990).
- ³ G. K. Wertheim and D. N. E. Buchanan, Solid State Commun. **88**, 97 (1993).
- ⁴ W. Zhao, Y. Li, L. Chen, Z. Liu, Y. Huang, and Z. Zhao, Solid State Commun. 92, 313 (1994).
- ⁵ P. Byszewski, E. Kowalska, and R. Diduszko, J. Therm. Anal. **45**, 1205 (1995).
- ⁶ L. Norin, U. Jansson, C. Dyer, P. Jacobsson, and S. McGinnis, Chem. Mater. **10**, 1184 (1998).
- ⁷ J. Nordgren, Appl. Phys. A **65**, 97 (1997).
- ⁸ J.-H. Guo, P. Glans, P. Skytt, N. Wassdahl, J. Nordgren, Y. Luo, H. Ågren, Y. Ma, T. Warwick, P. Heimann, E. Rotenberg, and J. Denlinger, Phys. Rev. B **52**, 10681 (1995).
- ⁹ J. Nordgren and R. Nyholm, Nucl. Instr. Methods, A **246**, 242 (1986); J. Nordgren, G. Bray, S. Cramm, R. Nyholm, J.-E. Rubensson, and N. Wassdahl, Rev. Sci. Instrum. **60**, 1690 (1989).
- ¹⁰ Y. Luo, H. Ågren, F. Kh. Gel'mukhanov, J.-H. Guo, P. Skytt, N. Wassdahl, and J. Nordgren, Phys. Rev. B 52, 14479 (1995).
- ¹¹ P. Skytt, P. Glans, J.-H. Guo, K. Gunnelin, C. Såthe, J. Nordgren, F. Kh. Gel'mukhanov, A. Cesar, and H. ≈gren, Phys. Rev. Lett. **77**, 5035 (1996).